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1 Uniqueness of the solution to the linear re-
gression problem

In this exercise we are going to discuss whether the optimal solutions of the dif-
ferent linear models are unique or not. Remember that the optimal parameters
are always found by minimizing the negative log-likeihood, therefore we need
to show that the minimum we find is a global minimum of the function we are
optimizing.

We will start by showing it in the case of linear regression, which you might
recall it consists of solving the optimization problem:

ming|ly — XB||3 = ming £(8) (1)

a) Start by computing the first derivative of Equation 1, Vg£(3). Hint: A
couple of vector calculus identities that you can use:

o Vi|[x||3 = Vix'x = 2x

o Vi Ax = AT

Solution:

VeL(B) =Vplly - XBI[; =
= (Valy - XB))(2(y - XB)) = -2X"(y - Xp) =
=2X"(XB - y)
b) Now compute the second derivative (or Hessian) with respect to the pa-

rameters (H = V(Vg)L(8)) Hint: Recall that for any matrix A, (ATA)T =
ATA

Solution:

Ve(2XT(XB —y)) = Vp(2X'X)B = 2X'X



You should have obtained a second derivative is constant for all values of
8.

Since L£(B) is continuous and differentiable, in order to show that the
solution is unique, we only need to show that the function £(3) is convex.
This means that there are no changes in curvature in the function and that
the minimum we find has to be the only one. To visualize this, imagine a
function in 1D that is always convex (U-shapes) at every point, you should
see there can only be one minimum, since the curvature does not change.
For functions in R™, showing that a function is convex is equivalent to
showing that the Hessian is positive definite (H > 0), which translates to
the following condition:

H>0cviHV>0,Yv#0

Show that the Hessian is positive definite and therefore that the solution
to the linear regression problem is unique (assume X is full rank).

Solution: We apply the condition for positive definiteness to the Hessian
we computed in the previous step:

vIHv = v 2XTX)v = 2(Xv)T (Xv) = 2||XV||2 > 0

The only case in which this is equal to 0 is when Xv = 0, which means
that v is in the null space of X, this can never happen if X is full rank.

We will now repeat the same steps for the case of logistic regression, start
by computing the first derivative. Recall that the optimization problem
we are solving is:

ming — Y _yilog(o(x]B)) + (1 — ;) log(1 — o (x] B)) (2)

Hint: You can use that d‘;ff) = o(z)(1—o(z)) and recall that o(z) > 0, Vz.
Solution:

n

Vo) = = 3 (v Youlo (<7 8) + (1~ i) 5 Toxl1 ~ o7 3) ) =

-1

== (g B~ o B+ (1)

n

= (il —o(xIB))xi — (L —y)o(x! B)x;) = Y (o(xIB) —
=1

i=1

As before, compute the second derivative (or Hessian) with respect to the
parameters.

1= o(IP)

o(x"B)(1 - a(x?m)xi) _

yi)xi



Solution:

n

VaL(B) =Y (Valo(x{ B) — yi)x:) =

(2

I
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o(x; B)(1 — o(x] B))xix]

e

Il
-
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f) Finally, show that the Hessian is positive definite and therefore that the
solution to the logistic regression problem is unique (assume X is full
rank). Hint: You can use the fact that o(z)(1 — o(z)) > 0, Vz.

Solution: We will show that the Hessian is P.D by applying the condition
shown above:

n

viHv =vT ( Z o(x;B)(1 - U(X?ﬁ))XiX?)V =
i=1

o(x] B)(1 —o(x] B)v xix] v =

o

«
I
—

o(xi B) (1~ o(x{ B) (v xi)* > 0

)

Q
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-

In the last step we have combined the hint and the fact that v7x; is a
scalar, therefore (vI'x;)% > 0.

Note: Although this exercise is mathematically more demanding, we do not
expect you to solve these sort of problems in the exam. This is to illustrate
a result that you should know, and make you feel more comfortable with the
mathematical tools often used in data science and machine learning.

2 Clustering

In this exercise, you are analyzing a dataset consisting of 500 single-cell gene
expression profiles, each measured across 1000 genes.
After performing Principal Component Analysis (PCA), you retain the
top 3 principal components, which capture 85% of the total variance in the
data.

You wish to identify subpopulations of cells using unsupervised clustering.

2.1 Clustering Theory

(a) Briefly explain two limitations of K-means clustering when applied to
high-dimensional biological data.
Discuss assumptions about cluster shapes, distance metrics, or initializa-
tion sensitivity.



(b) Define the within-cluster sum of squares (WCSS) objective function
used by K-means. Show how this cost is minimized in the centroid update

step.

(¢) Based on the figure below, explain and justify which choice of k is optimal
for the K-means clustering algorithm.

Within Groups Sum of Squares

Solutions:
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Figure 1: WCSS vs. number of clusters

(a) Two limitations of K-means clustering in high-dimensional bio-
logical data:

e Assumption of spherical clusters: K-means assumes that clus-
ters are convex and isotropic (i.e., spherical in shape), which may not
hold true for real biological data.

e Sensitivity to initialization: The algorithm can converge to dif-
ferent local minima depending on the initial positions of centroids.
Multiple runs with different initializations are needed.

e Distance metric limitations:

Euclidean distance becomes less

meaningful in high-dimensional space due to the curse of dimension-

ality.

(b) Within-cluster sum of squares (WCSS):

k
Jwess = Z Z 2 — pas|?

i=1x€C;



where p; is the centroid of cluster C;. In the update step of K-means, the
centroid is updated as the mean of all points in its cluster:

1

This choice of centroid minimizes the sum of squared Euclidean distances
from each point to its cluster center.

(c) Elbow plot interpretation:
e As k increases, the WCSS decreases because each cluster has fewer
points, and centroids can be placed more precisely.
e However, the rate of decrease slows after a certain point — adding

more clusters yields only marginal improvement.

The elbow point is the value of k at which the decrease in WCSS begins
to level off. It represents the optimal trade-off between:

e Minimizing intra-cluster variance (low WCSS), and

e Avoiding overfitting or excessive fragmentation (too many clusters).
In the figure, the elbow point appears to be at kK = 6, where the WCSS

starts to decrease at a slower rate. This suggests that six clusters are suf-
ficient to capture the underlying structure of the data without overfitting.

2.2 Clustering Computation

You perform K-means clustering on the PCA-reduced data with k = 3, resulting
in the following cluster centroids:

g1 =[1.2, 0.5, 0.3]
pz = [3.5, 1.1, —0.8]
ps = [—0.9, —2.0, 1.5]

You are given three new cell profiles projected into PCA space:

x4 = [1.0, —0.6, 0.2]
xp = [3.2, 1.4, —0.6]
xc = [-1.0, —1.8, 1.3]
(a) Assign each of the three cells (A, B, C) to a cluster using the Euclidean
distance. Show all your calculations.
(b) Compute the silhouette coefficient s(i) for Cell A, given:
a(i) = 0.45, b(i) = 2.05
Use the formula:
b(i) — a(i)

) = ax(a(@), b(@)



(¢) Suppose that running K-means with & = 4 yields a drop in the average
silhouette score from 0.71 to 0.55. Interpret this result. What does this
suggest about your choice of k7 What alternative method could be used
to select an optimal k7

Solutions:
Cluster centroids:

g1 =[1.2, —0.5, 0.3]
ps = [3.5, 1.1, —0.8]
ps = [—0.9, —2.0, 1.5]

Cell profiles:
x4 = [1.0, —0.6, 0.2]

o5 =[3.2, 1.4, —0.6]
ze = [~1.0, —1.8, 1.3]

(a) Euclidean distances:
Cell A:

da(pr) = /(1.0 = 1.2)2 + (=0.6 + 0.5)2 + (0.2 — 0.3)2
= 1/0.04 + 0.01 4 0.01 = v/0.06 ~ 0.245

da(pz) = /(1.0 — 3.5)2 + (=0.6 — 1.1)2 + (0.2 + 0.8)2
=1/6.25 +2.89 + 1.00 = v/10.14 ~ 3.183

da(ps) = /(1.0 4+ 0.9)2 + (=0.6 +2.0)2 + (0.2 — 1.5)2
= V/3.61 +1.96 + 1.69 = V/7.26 ~ 2.695

Assign A to Cluster 1.
Cell B:

dp(p1) = /(32— 1.2)2 + (1.4 + 0.5)2 + (0.6 — 0.3)2
= /4.0 + 3.61 + 0.81 = v/8.42 ~ 2.902

dp(p2) = /(3.2 —3.5)2 + (1.4 — 1.1)2 4+ (—0.6 + 0.8)2
=1/0.09 +0.09 + 0.04 = v0.22 ~ 0.469

dp(uz) = /(3.2 +0.9)2 + (1.4 + 2.0)2 + (0.6 — 1.5)2
= /16.81 + 11.56 + 4.41 = v/32.78 ~ 5.725

Assign B to Cluster 2.



(b)

(c)

Cell C:
de(p1) = /(1.0 = 1.2)2 + (—1.8 + 0.5)% + (1.3 — 0.3)2
= V4.84 +1.69 + 1.00 = V7.53 ~ 2.745
de(pe) = V/(=1.0 —3.5)2 + (1.8 — 1.1)2 + (1.3 + 0.8)2
=/20.25 + 8.41 + 4.41 = v/33.07 ~ 5.75
do(ps) = V/(=1.0+0.9)2 + (-1.8 + 2.0)2 + (1.3 — 1.5)2
= 1/0.01 + 0.04 + 0.04 = v/0.09 ~ 0.300

Assign C to Cluster 3.
Silhouette coefficient for Cell A:

b(i) — a(i) 2.05-045 160

s(i) = =

= ~ 0.780
max(a(i),b(i)) max(0.45, 2.05)  2.05

Interpretation of silhouette drop (0.71 to 0.55): A drop in silhouette
score indicates that the clusters have become less well-defined. This could

mean that increasing k from 3 to 4 led to:

e Splitting of coherent clusters into smaller, less meaningful subgroups.

e Overfitting noise in the data.

Alternative method: Use the elbow method or inspect the silhou-
ette score across multiple k£ values to choose the optimal number of

clusters.

An almost-1-D cloud

Data set. Consider the six two-dimensional observations:

The first four lie on the line y = x; the last two lie on y = —x. Consequently
the cloud is almost one-dimensional. You may solve formally by computing the
sample covariance matrix and its eigen-decomposition, or intuitively by recog-

D={(2,2), (1,1), (-1,-1), (=2,-2), (1,-1), (-1,1)}.

nising the principal-component directions.

1.

2.

3.

Centering. Compute the sample mean p and the centred data matrix

X..
Covariance matrix. Evaluate

Y= 1 X X.

n—1

Eigen-decomposition.



(a) Find the eigenvalues A\ > Ay and unit eigenvectors uj,uy of the
covariance matrix X.

(b) Identify which eigenvector is the first principal component (PC1).
4. Variance explained.

(a) What fraction of the total variance does PC1 capture?
(b) How many PCs are needed to retain at least 80 of the variance?

5. Scores. Project every centred observation onto PC1 to obtain its 1-D
scores.

6. Low-rank reconstruction. Using only PC1, reconstruct each point
% = p + (u](x; —p)ur,

compute the mean-squared reconstruction error (MSRE), and relate it to
the 20 variance that PC 1 fails to capture.

Hint: Because the data are already visually symmetric, much of the com-
putation can be bypassed by reasoning about the principal directions
y = *£x.

Solutions:
We annotate each step; an intuitive route that spots the PCs first yields the
same answers more quickly.

1. Centering The data are symmetric about the origin, hence

p=007" X=X
2. Covariance matrix Forming X X, and dividing by n—1 = 5 gives
24 1.6
X = (1.6 2.4) '
Intuition. The large positive off-diagonal element already signals that the major
axis lies along y = x.

3. Eigen-decomposition Solving det(X — AI) = 0:
(24—-N?—-1.62=0—-A=24+16
A =4.0, A2=0.8.
Corresponding unit eigenvectors:
w=5(L D, we= (1 -
So PC 1 runs along the 45° line y =  and PC 2 is the perpendicular axis.



4. Variance explained Total variance = tr(X) = 4.8.

)\1>—\&-1>\2 = %8 = 0.833 (83.3%).

Hence one component already exceeds the 80 target.

5.Scores For each centred point (z;,y;),
si = (2, ;)" = %(Iz + ¥i).
This yields s = {+2v/2, +v/2, —v/2, —2/2, 0, 0} for the six observations.

6. Low-rank reconstruction and MSRE With only PC 1,
)A(i = S; uj.

The first four points (on y = x) are recovered perfectly; the two on y = —x
collapse to (0,0), each incurring squared error 2.

0+0+0+0+2+2 4
6 6
Intuitive view. Visually, the cloud is a “cigar” whose long axis is y = x;

projecting onto that line keeps four points unchanged and folds the other two
to the centre, exactly as the numerical PCA confirms.

MSRE =

0.66,

4 Performance metrics

Consider a molecular test designed to determine whether a biological cell belongs
to a specific cluster of malignant cells. Suppose the sensitivity and specificity
of the test are both 95%, meaning that both false positives (the test indicates
the cell is malignant when it is not) and false negatives (the test indicates the
cell is not malignant when it actually is) occur in 5% of the cases. Despite
this apparent precision, interpreting the test results still requires caution. Let’s
understand why:

(a) Someone claims that if a cell tests positive, then there is a 95% chance
that it is indeed malignant. Is this statement correct? Explain.

(b) Now, consider that only 5% of the cells in a given tissue sample are actually
malignant. What is the probability that a cell is malignant given that it
tested positive? Interpret the result.

What happens if two independent tests are performed on the same cell and
both return positive results (the test are also conditionally independent
on the cancerous status of the cell)? Interpret the result.

(¢) Suppose instead that 50% of the cells in the sample are malignant. How
does this change the probability you computed in part (b)? Conclude
what’s the effect of prevalence.



(d) We have studied the metrics you have found in (b) and (c). What’s its
name? Based on the information provided, can you compute the accuracy
of the test? Justify your answer.

Solution

We provide the solution in terms of the probability, although one could use
alternate approaches.
Reminder: the prevalence is the fraction of positive in the population.

Define M ("malignant’) as the event that a cell truly belongs to the malignant
cluster, and P (’positive’) as the event that the test result is positive. The
sensitivity and specificity of the test mean that

P(P| M) = P(N | m)=0.95.

(a) The claim to be evaluated is whether P(M | P) = 0.95. In the problem
statement, we are only told that P(P | M) = 0.95, so there is no reason to
believe it.

(b) Suppose we are told that only 5% of the cells in a sample are malignant.

Then
5 95

P(M)=— =

(M) =500 P = 150

By Bayes’ theorem

P|M)-P(M)
P(P)

P | Py = 2

We find P(P) using the law of total probability
P(P)=P(P| M)-P(M)+P(P | m)-P(m) = 0.95-0.05 + 0.05-0.95 = 0.0475 + 0.0475 = 0.095.
Then
0.95-0.06 1
0.095 2
Thus, even though the test is 95% accurate in both directions, a single

positive result only gives a 50% chance of malignancy due to the low base rate.
We now consider taking two independent tests and both return positive.

P(M | P) =

P(P,N P, | M) P(M)
P(P, N Py)

P(M|PNP) =
Where
P(PPNPy | M)=P(P, | M)>=0.95% P(P,N P, | m)=0.05%
Then

10



Finally
P(M | PLN Py) = 0.95.

So, two positive tests bring the posterior probability of malignancy back

to 95%, illustrating how repeated independent tests can significantly increase
certainty.

(c) If instead P(M) = 0.5, we recompute:
P(P)=0.95-0.5+0.05-0.5=0.5,

0.95-0.5
P(M|P)=——=0.95.
(M| P) 05
Higher prevalence leads to higher confidence in a positive result.

(d) What we computed is nothing but

TP

Precision = P(M | P)ETP—l—iFP

From the initial description alone, we cannot compute precision and accuracy.
However, once we are given the prevalence, it is possible to obtain such values
as you have seen for the precision and as follows for the accuracy

Accuracy = Sensitivity - Prevalence + Specificity - (1 — Prevalence).

MCQs

e MAP estimation maximizes

log P(y | B) + log P(B).
For a Gaussian prior this adds a penalty term

1

5 2.0
J

to the log-likelihood, thereby recovering:

A. ridge regression’s objective

B. lasso regression’s objective

C. ordinary least squares

D. elastic net with 50% mixing
Solution:
A. A Gaussian prior on each coefficient, 3; ~ N(0, 72), contributes log P(;) o
—2%2 ﬁ? Summing over j gives an Lo penalty, so maximizing the poste-

rior is equivalent to minimizing least-squares plus an «|3]|3 term—that
is, ridge regression.

11



e Why does K-fold CV provide a more reliable error estimate than
a single train/test split?
A. it reduces bias but increases variance
B. it uses each point once for validation, averaging over splits
C. it always underestimates true error
D. it replaces the need for regularization
Solution:
B. With a single split, the test error can swing widely depending on which
samples end up in the test set. K-fold CV cycles each subset through being

“held out” exactly once, then averages the K validation errors—yielding
a lower-variance, more robust estimate.

e In a GWAS with highly correlated SNPs, lasso often selects only
one variant per LD block somewhat arbitrarily. Why?

A. L1 regularization cannot handle any correlations

B. the diamond-shaped L; region intersects the RSS contours at a single
corner

C. lasso enforces all correlated features to zero simultaneously

D. GWAS data violate the Laplace prior assumption
Solution:
B. Geometrically, the constraint ||5]; < ¢ is a “diamond” in coefficient
space and the RSS contours are ellipses. Their first point of contact is

almost always at a corner—i.e. one nonzero —so lasso picks a single
SNP in each correlated block.

e In a classification model with highly correlated gene-expression
predictors, why does ridge regression often outperform OLS?

A. it increases coefficient magnitudes for correlated predictors
B. it penalizes large coeflicients, stabilizing estimates under multicollinear-
ity

C. it drops one of each correlated pair automatically

D. it guarantees unbiased estimates
Solution.:
B. OLS estimates blow up when predictors are collinear (high variance).
Adding an L, penalty shrinks coefficients toward zero, taming variance at

the cost of a little bias—and thus improving overall generalization under
multicollinearity.
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